Abstract

Back-contact modification using a 10-nm ZnS layer in CZTSSe-based solar cell can play a crucial role in improving photovoltaic conversion efficiency. An ultrathin layer of ZnS is deposited over Mo-coated soda lime glass substrate before depositing CZTSSe using sputtering. The crystal structure of deposited CZTSSe thin films over ZnS is recognized as (112)-oriented, polycrystalline in nature, and free from the presence of any secondary phases such as Cu <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> (S,Se) or Zn(S,Se). The bandgap of CZTSSe thin films deposited over ultrathin ZnS is observed to increase from 1.49 (deposited over Mo directly) to 1.58 eV at room temperature, as determined by spectroscopic ellipsometry. In addition, numerical simulation has been performed using SCAPS software. The impact of ZnS layer has been simulated by using the defects in the absorber and at the interface of ZnS/CZTSSe. The simulated results have been validated with experimentally fabricated CZTSSe device. Simulated device with ZnS intermediate layer is observed to give rise to a photovoltaic conversion efficiency of 15.2%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call