Abstract

Motivated by the stereological problem of volume estimation from parallel section profiles, the so-called Newton-Cotes integral estimators based on random sampling nodes are analyzed. These estimators generalize the classical Cavalieri estimator and its variant for non-equidistant sampling nodes, the generalized Cavalieri estimator, and have typically a substantially smaller variance than the latter. The present paper focuses on the following points in relation to Newton-Cotes estimators: the treatment of dropouts, the construction of variance estimators, and, finally, their application in volume estimation of convex bodies.Dropouts are eliminated points in the initial stationary point process of sampling nodes, modeled by independent thinning. Among other things, exact representations of the variance are given in terms of the thinning probability and increments of the initial points under two practically relevant sampling models. The paper presents a general estimation procedure for the variance of Newton-Cotes estimators based on the sampling nodes in a bounded interval. Finally, the findings are illustrated in an application of volume estimation for three-dimensional convex bodies with sufficiently smooth boundaries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.