Abstract
Abstract The recent availability of high spatial and temporal resolution optical and radar satellite imagery has dramatically increased opportunities for mapping land cover at fine scales. Fusion of optical and radar images has been found useful in tropical areas affected by cloud cover because of their complementarity. However, the multitemporal dimension these data now offer is often neglected because these areas are primarily characterized by relatively low levels of seasonality and because the consideration of multitemporal data requires more processing time. Hence, land cover mapping in these regions is often based on imagery acquired for a single date or on an average of multiple dates. The aim of this work is to assess the added value brought by the temporal dimension of optical and radar time series when mapping land cover in tropical environments. Specifically, we compared the accuracies of classifications based on (a) optical time series, (b) their temporal average, (c) radar time series, (d) their temporal average, (e) a combination of optical and radar time series and (f) a combination of their temporal averages for mapping land cover in Jambi province, Indonesia, using Sentinel‐1 and Sentinel‐2 imagery. Using the full information contained in the time series resulted in significantly higher classification accuracies than using temporal averages (+14.7% for Sentinel‐1, +2.5% for Sentinel‐2 and +2% combining Sentinel‐1 and Sentinel‐2). Overall, combining Sentinel‐2 and Sentinel‐1 time series provided the highest accuracies (Kappa = 88.5%). Our study demonstrates that preserving the temporal information provided by satellite image time series can significantly improve land cover classifications in tropical biodiversity hotspots, improving our capacity to monitor ecosystems of high conservation relevance such as peatlands. The proposed method is reproducible, automated and based on open‐source tools satellite imagery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.