Abstract
Frequency diverse array and multiple-input multiple-output (FDA-MIMO) radar is studied more to realise the joint estimation of range and angle. However, the estimation performance of target parameters for linear FDA radar with an identical frequency increment and multiple-input multiple-output (IFI-FDA-MIMO) and logarithmically increased frequency offset linear interval, and multiple-input multiple-output (LIFO-FDA-MIMO) is fundamentally limited by the periodic range-time variation and time-variant dot shape beampattern respectively. In this article, we proposed a joint range and angle estimation algorithm based on a new waveform synthesis model of time modulation and rang compensation FDA-MIMO (TMRC-FDA-MIMO). The emulation results demonstrate that the improved scheme achieves the goal of time-invariant, dot-shaped and low sidelobe beampattern, which is optimised by a new accelerated particle swarm optimisation (NAPSO) algorithm. The performance of target estimation under the Cramer Rao lower bound (CRLB), and the root means square errors (RMSE) of the radar system is analysed. Moreover, the mathematical formula derivation and numerical results verify the performance of the proposed algorithm, which shows that TMRC-FDA-MIMO radar system is superior to others mentioned above.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have