Abstract
In this paper we describe an elegant and efficient approach to coupling reordering and decoding in statistical machine translation, where the n-gram translation model is also employed as distortion model. The reordering search problem is tackled through a set of linguistically motivated rewrite rules, which are used to extend a monotonic search graph with reordering hypotheses. The extended graph is traversed in the global search when a fully informed decision can be taken. Further experiments show that the n-gram translation model can be successfully used as reordering model when estimated with reordered source words. Experiments are reported on the Europarl task (Spanish---English and English---Spanish). Results are presented regarding translation accuracy and computational efficiency, showing significant improvements in translation quality with respect to monotonic search for both translation directions at a very low computational cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.