Abstract

Predicting crop yield using deep learning (DL) and remote sensing is a promising technique in agriculture. In smallholder agriculture (<2 ha), where 84% of the farms operate globally, it is crucial to build a model that can be useful across several fields (high spatial transferability). However, enhancing spatial model transferability in a small-scale setting faces significant challenges, including spatial autocorrelation, heterogeneity and scale dependence of spatial dynamics, as well as the need to address limited data points. This study aimed to test the hypothesis that spatial cross validation (SCV) is a more suitable model validation practice than random cross validation (RCV) to enhance model transferability for spatial prediction in a small-scale farming setting. We compared the performances of DL models that predict crop yield for several settings including three crop types and two DL architectures based on RCV with and without overlapping samples and SCV. Notably, we conducted model performance tests on external, equally sized fields instead of the field used for training. We used high resolution RGB imagery taken with a drone as input. Our results show that the models using SCV outperformed those using RCV when the models were tested on external fields (on average r = 0.37 for SCV, r = 0.18 for RCV with overlap and r = 0.07 without), even though the models using SCV showed a substantially lower performance for cross validation (CV) than those using RCV (r with SCV and RCV w/o overlap = 0.73 and 0.98/0.73, respectively). The results suggest that RCV leads to over-optimism by overfitting the spatial structure and remembering image-specific information (so called memorization). Our study offers the first empirical evidence in agriculture that SCV is preferable to RCV in small field settings for making DL models more transferable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call