Abstract
AbstractIn the semiarid interior western USA, where a majority of surface water supply comes from mountain forests, high‐resolution aerial lidar‐based surveys are commonly used to study snow. These surveys provide rich information about snow depth, but they are usually not accompanied with spatially explicit measurements of snow density, which leads to uncertainty in the estimation of snow water equivalent (SWE). In this study, we use a novel approach to distribute ~300 field measurements of snow density with artificial neural networks. We combine the resulting density maps with aerial lidar snow depth measurements, bias corrected with a very large and precisely geolocated array of field‐measured snow depths (~4,000 observations), to create and validate maps of snow depth, snow density, and SWE over two sites along Arizona's Mogollon Rim in February and March 2017. These maps show differences between midwinter and late‐winter snow conditions. In particular, compared to that of snow depth, the spatial variability of snow density is smaller for the later snow survey than the earlier snow survey. These gridded data also show that the representativeness of Snow Telemetry and other point measurements is different for the midwinter and late‐winter snow surveys. Overall, the lidar artificial neural network SWE estimates can be as much as 30% different than if Snow Telemetry density were used with lidar snow depths to estimate SWE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.