Abstract

The carbon dioxide (CO2) storage capacity of saline formations may be constrained by reservoir pressure limitations. Brine extraction could be necessary to increase the CO2 storage capacity of a given formation, manage the extent of the underground CO2 plume and induced pressure front, and control the migration direction. To estimate the additional CO2 storage capacity of a saline formation that can be made accessible by extraction of in-situ brines, a three-dimensional (3D) generic cubic cell containing one CO2 injector in the middle surrounded by four brine extractors at each corner of the cell was assumed. A series of Tough2-ECO2N reservoir simulations were constructed with varying reservoir properties and run. Based on a series of scenarios, a mechanism was developed and demonstrated that resulted in derivation of a function to provide estimates of the ratio of total CO2 injection over the brine extraction rate for a given scenario. We selected multiple saline formations in U.S. basins and evaluated the potential to increase the combined dynamic CO2 storage capacity of the selected saline formations to over 1000 million metric tonnes per year (Mt/yr) of CO2 for 100 years by means of brine extraction. Such storage capacities may be adequate to accommodate the CO2 injection rates suggested for the United States under a “beyond two-degree Celsius scenario” (B2DS) that has been proposed to maintain global temperature rise to less than 2°C above pre-industrial reported levels. The results suggest that B2DS goals could be achieved with a volume ratio of brine extraction to CO2 injection as low as 1:4, which is far lower than the ratios that have been commonly assumed in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.