Abstract

This paper presents a method for improving the quality of distorted 3D point clouds made from a vehicle equipped with a laser scanner moving over uneven terrain. Existing methods that use 3D point-cloud data (for tasks such as mapping, localisation, and object detection) typically assume that each point cloud is accurate. For autonomous robots moving in rough terrain, it is often the case that the vehicle moves a substantial amount during the acquisition of one point cloud, in which case the data will be distorted. The method proposed in this paper is capable of increasing the accuracy of 3D point clouds, without assuming any specific features of the environment (such as planar walls), without resorting to a “stop-scan-go” approach, and without relying on specialised and expensive hardware. Each new point cloud is matched to the previous using normal-distribution-transform (NDT) registration, after which a mini-loop closure is performed with a local, per-scan, graph-based SLAM method. The proposed method increases the accuracy of both the measured platform trajectory and the point cloud. The method is validated on both real-world and simulated data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.