Abstract

Rationally designed free-standing and binder-free Raney-type nickel–molybdenum (Ni–Mo) electrodes produced via atmospheric plasma spraying (APS) are developed by correlating APS process parameters with the microstructure of electrodes and their electrochemical performance in alkaline media. The results revealed that the electrode morphology and elemental composition are highly affected by the plasma parameters during the electrode fabrication. It is found that increasing plasma gas flow rate and input plasma power resulted in higher in-flight particle velocities and shorter dwell time, which in result delivered electrodes with much finer structure exhibiting homogeneous distribution of phases, larger quantity of micro pores and suitable content of Ni and Mo. Tafel slope of electrodes decreased with increasing the in-flight particles velocities from 71 to 33 mV dec−1 in 30 wt.% KOH. However, beyond a critical threshold in-flight velocity and temperature of particles, electrodes started to exhibit larger globular pores and consequently reduced catalytic performance and higher Tafel slop of 36 mV dec−1 in 30 wt.% KOH. Despite slightly lower electrochemical performance, the electrodes produced with highest plasma gas flow and energy showed most inter-particle bonded structure as well as highest stability with no measurable degradation over 47 days in operation as HER electrode in 30 wt.% KOH. The Raney-type Ni–Mo electrode fabricated at highest plasma gas flow rate and input plasma power has been tested as HER electrode in alkaline water electrolyzer, which delivered high current densities of 0.72 and 2 A cm−2 at 1.8 and 2.2 V, respectively, representing a novel prime example of HER electrode, which can synergistically catalyze the HER in alkaline electrolyzer. This study shows that sluggish alkaline HER can be circumvented by rational electrode composition and interface engineering.

Highlights

  • Designed free-standing and binder-free Raney-type nickel–molybdenum (Ni–Mo) electrodes produced via atmospheric plasma spraying (APS) are developed by correlating APS process parameters with the microstructure of electrodes and their electrochemical performance in alkaline media

  • Evolution reaction (OER) at the anode is a sluggish reaction in Alkaline water electrolysis (AWE), which is true in proton exchange membrane water electrolysis (PEMWE) as well, and hydrogen evolution reaction (HER) at the cathode side is considered to be sluggish and slow reaction in the alkaline ­condition[5,6,7,8]

  • To show the relative merits of Raney-type Ni–Mo electrodes as HER electrocatalysts in practical application, the HER electrode with high performance in terms of onset potential and Tafel slope and highest durability is tested as a cathode electrode along with the APS-based Raney-type Ni as an anode in AWE operated in 30 wt.% KOH

Read more

Summary

Introduction

Designed free-standing and binder-free Raney-type nickel–molybdenum (Ni–Mo) electrodes produced via atmospheric plasma spraying (APS) are developed by correlating APS process parameters with the microstructure of electrodes and their electrochemical performance in alkaline media. Aluminide phases were removed from the electrodes using chemical activation in order to fabricate the Raney-type Ni–Mo and increase the porosity and surface area.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call