Abstract

Allometry determines how tree shape and function scale with each other, related through size. Allometric relationships help scale processes from the individual to the global scale and constitute a core component of vegetation models. Allometric relationships have been expected to emerge from optimisation theory, yet this does not suitably predict empirical data. Here we argue that the fusion of high-resolution data, such as those derived from airborne laser scanning, with individual-based forest modelling offers insight into how plant size contributes to large-scale biogeochemical processes. We review the challenges in allometric scaling, how they can be tackled by advances in data-model fusion, and how individual-based models can serve as data integrators for dynamic global vegetation models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.