Abstract

AbstractIntegrated crop management practices can improve rice (Oryza sativa L.) grain yield, but the effects of such practices on dry matter accumulation and photosynthetic productivity are inconsistent and not well understood. The primary objective of this study was to investigate the effects of integrated crop management practices on dry matter accumulation and redistribution, photosynthetic production, and yield of rice in northeast China. Medium‐ and high‐yielding potential japonica rice cultivars were grown using four crop management practices, including no N application (N0), local farmers’ cultivation practice (FP), high‐yield cultivation practice (HYP), and super‐high‐yield cultivation practice (SHYP). The increases in average yield with the HYP and SHYP treatments were 16.87 and 36.70%, respectively, in 2017 and 14.70 and 31.05%, respectively, in 2018, compared with FP. Increases in effective panicle number and spikelet number per panicle were the main reason for the increase in yield under the integrated crop management treatments. Compared with FP, the HYP and SHYP treatments significantly increased the population dry matter by 26.40 and 56.64%, respectively, before the heading stage. Relative to N0 and FP, HYP and SHYP significantly increased the dry matter export, export rate, and translocation rate in the leaves, stems, and sheaths and significantly increased the photosynthetic potential throughout the growth stage and the net assimilation rate after the tillering stage. These increases were critical for improving the quality of rice and achieving higher yields. Our study provides a theoretical basis for the development of high‐yield cultivation methods for rice in northeast China.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.