Abstract

Original Objectives. The overall goal is to develop methods to increase pregnancy rate in lactating dairy cows exposed to heat stress through methods that minimize damage to the oocyte and embryo caused by heat stress. Objectives were as follows: (1) examine the protective effects of melatonin on developmental competence of oocytes exposed to elevated temperature in vitro; (2) test whether melatonin feeding can improve developmental competence of oocytes in vivo and, if so, whether effects are limited to the summer or also occur in the absence of heat stress; and (3) evaluate the effectiveness of improving fertility by facilitating follicular turnover in the summer and winter. Revised Objectives. (1) Examine protective effects of melatonin and follicular fluid on developmental competence of oocytes exposed to elevated temperature in vitro; (2) examine the protective effects of melatonin on developmental competence of embryos exposed to elevated temperature in vitro; (3) evaluate effectiveness of improving fertility by administering human chorionicgonadotropin (hCG) to increase circulating concentrations of progesterone and evaluate whether response to hCG depends upon genotype for four mutations reported to be related to cow fertility; and (4) identify genes with allelic variants that increase resistance of embryos to heat shock. Background. The overall hypothesis is that pregnancy success is reduced by heat stress because of damage to the oocyte and cleavage-stage embryo mediated by reactive oxygen species (ROS), and that fertility can be improved by provision of antioxidants or by removing follicles containing oocytes damaged by heat stress. During the study, additional evidence from the literature indicated the potential importance of treatment with chorionicgonadotropin to increase fertility of heat- stressed cows and results from other studies in our laboratories implicated genotype as an important determinant of cow fertility. Thus, the project was expanded to evaluate hCG treatment and to identify whether fertility response to hCG depended upon single nucleotide polymorphisms (SNP) in genes implicated as important for cow fertility. We also evaluated whether a SNP in a gene important for cellular resistance to heat stress (HSPA1L, a member of the heat shock protein 70 family) is important for embryonic resistance to elevated temperature. Major conclusions, solutions & achievements. Results confirmed that elevated temperature increases ROS production by the oocyte and embryo and that melatonin decreases ROS. Melatonin reduced, but did not completely block, damaging effects of heat shock on the oocyte and had no effect on development of the embryo. Melatonin was protective to the oocyte at 0.1-1 μM, a concentration too high to be achieved in cows. It was concluded that melatonin is unlikely to be a useful molecule for increasing fertility of heat-stressed cows. Treatment with hCG at day 5 after breeding increased first-service pregnancy rate for primiparous cows but not for multiparous cows. Thus, hCG could be useful for increasing fertility in first-parity cows. The effectiveness of hCG depended upon genotype for a SNP in COQ9, a gene encoding for a mitochondrial-function protein. This result points the way to future efforts to use genetic information to identify populations of cows for which hormone treatments will be effective or ineffective. The SNP in HSPA1L was related to embryonic survival after heat shock. Perhaps, genetic selection for mutations that increase cellular resistance to heat shock could be employed to reduce effects of heat stress on fertility. Implications, both scientific and agricultural. This project has resulted in abandonment of one possible approach to improve fertility of the heat-stressed cow (melatonin therapy) while also leading to a method for improving fertility of primiparous cows exposed to heat stress (hCG treatment) that can be implemented on farms today. Genetic studies have pointed the way to using genetic information to 1) tailor hormonal treatments to cow populations likely to respond favorably and 2) select animals whose embryos have superior resistance to elevated body temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call