Abstract
The roles of fine-earth materials in the cation exchange capacity (CEC) of especially homogenous units of the kaolinitic and oxyhydroxidic tropical soils are still unclear. The CEC (pH 7) of some coarse-textured soils from southeastern Nigeria were related to their total sand, coarse sand (CS), fine sand (FS), silt, clay, and organic-matter (OM) contents before and after partitioning the dataset into topsoils and subsoils and into very-low-, low-, and moderate-/high-stability soils. The soil-layer categories showed similar CEC values; the stability categories did not. The CEC increased with decreasing CS but with increasing FS. Silt correlated negatively with the CEC, except in the moderate- to high-stability soils. Conversely, clay and OM generally impacted positively on the CEC. The best-fitting linear CEC function (R2, 68%) was attained with FS, clay, and OM with relative contributions of 26, 38, and 36%, respectively. However, more reliable models were attained after partitioning by soil layer (R2, 71–76%) and by soil stability (R2, 81–86%). Notably FS's contribution to CEC increased while clay's decreased with increasing soil stability. Clay alone satisfactorily modeled the CEC for the very-low-stability soils, whereas silt contributed more than OM to the CEC of the moderate- to high-stability soils. These results provide new evidence about the cation exchange behavior of FS, silt, and clay in structurally contrasting tropical soils.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have