Abstract

The growing world population and increasing life expectancy are driving the need to improve the quality of blood transfusion, organ transplantation, and preservation. Here, to improve the ability of red blood cells (RBCs) for normothermic machine perfusion, a biocompatible blood silicification approach termed "shielding-augmenting RBC-in-nanoscale amorphous silica (SARNAS)" has been developed. The key to RBC surface engineering and structure augmentation is the precise control of the hydrolysis form of silicic acid to realize stabilization of RBC within conformal nanoscale silica-based exoskeletons. The formed silicified RBCs (Si-RBCs) maintain membrane/structural integrity, normal cellular functions (e.g., metabolism, oxygen-carrying capability), and enhance resistance to external stressors as well as tunable mechanical properties, resulting in nearly 100% RBC cryoprotection. In vivo experiments confirm their excellent biocompatibility. By shielding RBC surface antigens, the Si-RBCs provide universal blood compatibility, the ability for allogeneic mechanical perfusion, and more importantly, the possibility for cross-species transfusion. Being simple, reliable, and easily scalable, the SARNAS strategy holds great promise to revolutionize the use of engineered blood for future clinical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.