Abstract

Bacteria containing ACC-deaminase in the vicinity of roots may influence plant growth by modifying root architecture through their potential to regulate ethylene synthesis in plant roots. Approximately 138 isolates capable of utilizing ACC as the sole source of N were isolated from the rhizosphere soil of chickpea ( Cicer arietinum L.) plants. Under axenic conditions, some rhizobacterial isolates were highly effective in increasing root length (up to 2.08 fold), number (up to 3.7 fold) and length (up to 3.9 fold) of lateral roots, and root biomass (up to 83%) of chickpea as compared to uninoculated control. Serratia proteamaculans strain J119 was found to be the most effective plant growth promoting rhizobacterium (PGPR) in improving root and shoot growth, nodulation and grain yield of chickpea as compared to respective controls in growth pouches, pot and field trials. A highly significant direct correlation ( r = 0.99) was observed between number of lateral roots under axenic conditions (jar trial) and number of nodules per plant in pot and field trials. Interestingly, S. proteamaculans J119 also exhibited highest ACC-deaminase activity in addition to root colonization compared to other tested strains. The results of this study demonstrated that changes in root growth and architecture (particularly lateral roots) as a result of inoculation with PGPR containing ACC-deaminase are crucial for improving growth, yield and nodulation of chickpea under field conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call