Abstract

The present study was designed with the objective of improving the nodulation and growth of chickpea (Cicer arietinum L.) by integrating co-inoculation of Rhizobium sp. (Mesorhizobium ciceri) and plant growth promoting rhizobacteria (PGPR) carrying ACC (1-aminocyclopropane-1-carboxylate) deaminase activity with P-enriched compost (PEC) under irrigated and rainfed farming systems. PEC was prepared from fruit and vegetable waste and enriched with single super phosphate. The results demonstrated that co-inoculation significantly (P < 0.05) increased the number of nodules per plant, nodule dry weight, pods per plant, grain yield, protein content, and total chlorophyll content under irrigated and rainfed conditions compared to inoculation with rhizobium alone. Integrating PEC with co-inoculation showed an additive effect on the nodulation and growth of chickpea under both farming systems. Analysis of leaves showed a significantly (P < 0.05) higher photosynthetic rate and transpiration rate in comparison with inoculation with Rhizobium. Compared to irrigated farming system, co-inoculation with PEC under rainfed conditions was more beneficial in improving growth and nodulation of chickpea. Post-harvest soil analysis revealed that the integrated use of bioresources and compost enhanced microbial biomass C, available N content, dehydrogenase, and phosphomonoesterase activities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call