Abstract

Genetic and physical maps are powerful tools to anchor fragmented draft genome assemblies generated from next-generation sequencing. Currently, two draft assemblies of Nelumbo nucifera, the genomes of 'China Antique' and 'Chinese Tai-zi', have been released. However, there is presently no information on how the sequences are assembled into chromosomes in N.nucifera. The lack of physical maps and inadequate resolution of available genetic maps hindered the assembly of N.nucifera chromosomes. Here, a linkage map of N.nucifera containing 2371 bin markers [217577 single nucleotide polymorphisms (SNPs)] was constructed using restriction-site associated DNA sequencing data of 181F2 individuals and validated by adding 197 simple sequence repeat (SSR) markers. Additionally, a BioNano optical map covering 86.20% of the 'Chinese Tai-zi' genome was constructed. The draft assembly of 'Chinese Tai-zi' was improved based on the BioNano optical map, showing an increase of the scaffold N50 from 0.989 to 1.48Mb. Using a combination of multiple maps, 97.9% of the scaffolds in the 'Chinese Tai-zi' draft assembly and 97.6% of the scaffolds in the 'China Antique' draft assembly were anchored into pseudo-chromosomes, and the centromere regions along the pseudo-chromosomes were identified. An evolutionary scenario was proposed to reach the modern N. nucifera karyotype from the seven ancestral eudicot chromosomes. The present study provides the highest-resolution linkage map, the optical map and chromosome level genome assemblies for N. nucifera, which are valuable for the breeding and cultivation of N. nucifera and future studies of comparative and evolutionary genomics in angiosperms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.