Abstract

We argue that the structure ordering of self-assembled probing molecular monolayers is essential for the reliability and sensitivity of nanowire-based field-effect sensors because it can promote the efficiency for molecular interactions as well as strengthen the molecular dipole field experienced by the nanowires. In the case of monolayers, we showed that structure ordering could be improved by means of electrical field alignment. This technique was then employed to align multilayer complexes for nanowire sensing applications. The sensitivity we achieved for detection of hybridization between 15-base single-strand DNA molecules is 0.1 fM and for alcohol sensors is 0.5 ppm. The reliability was confirmed by repeated tests on chips that contain multiple nanowire sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call