Abstract
Computer-assisted disease diagnosis is cost-effective and time-saving, increasing accuracy and reducing the need for an additional workforce in medical decision-making. In our prior research, we trained, tested, and compared the accuracies of nine optimizable classification models to diagnose and predict eight anaemia types from Complete Blood Count (CBC) data. This study aimed to improve these classification models by oversampling the original imbalanced dataset with four algorithms related to the Synthetic Minority Over-sampling Technique (SMOTE). The results showed that the validation accuracy increased from 99.22% (Ensemble model) to 99.57% (Tree model), and most importantly, the False Discovery Rate (FDR) for the anaemia type with the highest FDR decreased from 23.1% to 1.5%.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have