Abstract
Neural network (NN) models have been widely used in the literature for short-term load forecasting. Their popularity is mainly due to their excellent learning and approximation capability. However, their forecasting performance significantly depends on several factors including initializing parameters, training algorithm, and NN structure. To minimize negative effects of these factors, this paper proposes a practically simple, yet effective and an efficient method to combine forecasts generated by NN models. The proposed method includes three main phases: (i) training NNs with different structures, (ii) selecting best NN models based on their forecasting performance for a validation set, and (iii) combination of forecasts for selected best NNs. Forecast combination is performed through calculating the mean of forecasts generated by best NN models. The performance of the proposed method is examined using real world data set. Comparative studies demonstrate that the accuracy of combined forecasts is significantly superior to those obtained from individual NN models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.