Abstract
Stick-slip piezoelectric actautors are promising actautors with prinicipally unlimited stroke and positioning resolution. However, it is challenged with a low load capacity, which limits the field of application. Various types of compliant driving foot were proposed in literature to improve the load capacity but the improved load capacity is direction-dependent. To improve the load capacity in both forward and backward directions, this paper proposes an approach via a shared driving foot. The basic idea is to employ two piezoelectric actuators and a shared driving foot to work in a way that either forward or backward driving is a stick-slip process and both involve a clamping action during the ‘stick’ phase and a releasing action during the ‘slip’ phase, so that a large driving force/load capacity can be achieved in both driving directions. Following this approach, a shared driving foot was proposed and designed. Finite element simulations were carried out and have validated that the designed driving foot can realize the proposed approach as desired. A prototype was built and tested and the effectiveness of the proposed approach has been validated by experiments. Under the sawtooth waveform voltage of 100 V at 1 kHz, the prototype achieved a free-load forward and backward driving speed as large as 18.6 mm s−1 and 16 mm s−1 respectively and a load capacity larger than 2 kg for both driving directions. Under a driving load of 2 kg, it can still move stably with forward and backward driving speeds of 1.8 mm s−1 and 0.6 mm s−1 respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.