Abstract

A novel stick-slip type piezoelectric rotary actuator is proposed in this paper. The actuator equips with a parallelogram driving mechanism to generate a pair of variable force couple to drive the rotor. Two piezo-stacks are used to deform the parallelogram driving mechanism to realize large range motions with high resolution in both forward and backward directions. By utilizing pseudo-rigid-body method, geometric model of the parallelogram driving mechanism is established to analyze the motion of the actuator. Finite element analysis is conducted to simulate the deformation of the driving mechanism. A prototype is fabricated and a series of experiments are carried out. The experimental results indicate that the actuator prototype can achieve various angular velocities by changing the driving voltage and frequency and it can output large range rotary motions in both forward and backward directions. The driving resolutions are 0.75 μrad in forward direction and 0.82 μrad in backward direction and the maximum loading capacities are 74 N and 78 N, respectively. The angular displacement outputs under various driving voltages and frequencies show good linear relationships with the time in both forward and backward motions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.