Abstract

We explore how a simple linear change of variable affects the inclusion functions obtained with Interval Analysis methods. Univariate and multivariate polynomial test functions are considered, showing that translation-based methods improve considerably the bounds computed by standard inclusion functions. An Interval Branch-and-Bound method for global optimization is then implemented to compare the different procedures, showing that, although with times higher than those given by Taylor forms, the number of clusters and iterations is strongly reduced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.