Abstract

Multidate imagery and satellite image derivatives such as vegetation and texture indices have been reported to improve image classification. However, the increase in additional predictor variables has also resulted in high data dimensionality and redundancy. Feature selection and extraction can be used to reduce high data dimensionality and minimize redundancy. The purpose of this chapter is to test whether feature selection can improve image classification. In this chapter, image classification will be performed using two different approaches. First, image classification is performed using the random forests (RF) classifier and multiple data sets (that consist of multidate Landsat 5 TM imagery, and vegetation and texture indices). Second, image classification is performed using the RF classifier with feature selection and multiple data sets. While the tutorial exercises indicate that feature selection did not improve image classification accuracy, it reduced the number of predictor variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.