Abstract

Early-season area estimation of the winter wheat crop as a strategic product is important for decision-makers. Multi-temporal images are the best tool to measure early-season winter wheat crops, but there are issues with classification. Classification of multi-temporal images is affected by factors such as training sample size, temporal resolution, vegetation index (VI) type, temporal gradient of spectral bands and VIs, classifiers, and values missed under cloudy conditions. This study addresses the effect of the temporal resolution and VIs, along with the spectral and VIs gradient on the random forest (RF) classifier when missing data occurs in multi-temporal images. To investigate the appropriate temporal resolution for image acquisition, a study area is selected on an overlapping area between two Landsat Data Continuity Mission (LDCM) paths. In the proposed method, the missing data from cloudy pixels are retrieved using the average of the k-nearest cloudless pixels in the feature space. Next, multi-temporal image analysis is performed by considering different scenarios provided by decision-makers for the desired crop types, which should be extracted early in the season in the study areas. The classification results obtained by RF improved by 2.2% when the temporally-missing data were retrieved using the proposed method. Moreover, the experimental results demonstrated that when the temporal resolution of Landsat-8 is increased to one week, the classification task can be conducted earlier with slightly better overall accuracy (OA) and kappa values. The effect of incorporating VIs along with the temporal gradients of spectral bands and VIs into the RF classifier improved the OA by 3.1% and the kappa value by 6.6%, on average. The results show that if only three optimum images from seasonal changes in crops are available, the temporal gradient of the VIs and spectral bands becomes the primary tool available for discriminating wheat from barley. The results also showed that if wheat and barley are considered as single class versus other classes, with the use of images associated with 162 and 163 paths, both crops can be classified in March (at the beginning of the growth stage) with an overall accuracy of 97.1% and kappa coefficient of 93.5%.

Highlights

  • The global demand for food will increase due to the growth of the global population over the course of this century [1]

  • Multi-temporal images were used to differentiate between wheat, barley, and other classes using the random forest (RF) classifier

  • The experimental results demonstrated that 30% of the data and 50 trees were the optimum training sample size and forest size, respectively, for the study area

Read more

Summary

Introduction

The global demand for food will increase due to the growth of the global population over the course of this century [1]. It is, necessary to accurately estimate the crop area to determine if the demand for food can be met [2]. Farmers usually decide to change the crop type of their agricultural fields in response to the regional demand and drought conditions. The cultivated area of a given crop alters from one growing season to the next.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call