Abstract

This letter investigates into the impedance interaction between the electromagnetic interference (EMI) filter and the noise propagation path, and its influences on the filter design. It proves that the impedance resonance in the propagation path decreases the filter's high-frequency in-circuit attenuation. This letter proposes a method to improve the filter's high-frequency performance using an impedance-mismatching filter. The impedance-mismatching filter damps the resonance in the common mode (CM) noise propagation path and eliminates the high-frequency noise spike. By applying this method in the filter design, the CM inductor of the EMI filter can be significantly reduced since the EMI filter avoids the overdesign caused by its high-frequency performance degradation, and the filter can potentially achieve high power density. This letter also proposed a design procedure for this impedance-mismatching filter. An improved EMI filter design method considering this impedance mismatching is also proposed in this letter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.