Abstract

This study investigated the role of microwave-assisted synthesis in enhancing green hydrogen (H2) production via thermochemical water splitting (TWS) using Ni-based nanocatalysts on an Al2O3 support. H2-TPR analysis showed that the microwave-assisted synthesized (MW) catalysts exhibited stronger peaks at lower temperatures, indicating improved Ni dispersion on the Al2O3 support. Moreover, higher H2-uptake values were observed with increasing Ni concentration for both synthesis methods, indicating the presence of more accessible reducible sites crucial for catalytic activity. The MW-prepared catalysts displayed smaller particle sizes, narrower pore size distributions, and higher hydrogen adsorption capacities than those synthesized via impregnation. Additionally, they demonstrated superior catalytic activity and efficiency for hydrogen generation, with yields (∼55.42 %). Overall, our research underscores the potential of microwave-assisted synthesis as a promising method to develop efficient catalysts for hydrogen production applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.