Abstract
The accuracy of location information, mainly provided by the global positioning system (GPS) sensor, is critical for Internet-of-Things applications in smart cities. However, built environments attenuate GPS signals by reflecting or blocking them resulting in some cases multipath and non-line-of-sight (NLOS) reception. These effects cause range errors that degrade GPS positioning accuracy. Enhancements in the design of antennae and receivers deliver a level of reduction of multipath. However, NLOS signal reception and residual effects of multipath are still to be mitigated sufficiently for improvements in range errors and positioning accuracy. Recent machine learning-based methods have shown promise in improving pseudorange-based position solutions by considering multiple variables from raw GPS measurements. However, positioning accuracy is limited by low accuracy signal reception classification. Unlike the existing methods, which use machine learning to directly predict the signal reception classification, we use a gradient boosting decision tree (GBDT)-based method to predict the pseudorange errors by considering the signal strength, satellite elevation angle and pseudorange residuals. With the predicted pseudorange errors, two variations of the algorithm are proposed to improve positioning accuracy. The first corrects pseudorange errors and the other either corrects or excludes the signals determined to contain the effects of multipath and NLOS signals. The results for a challenging urban environment characterized by high-rise buildings on one side, show that the 3-D positioning accuracy of the pseudorange error correction-based positioning measured in terms of the root mean square error is 23.3 m, an improvement of more than 70% over the conventional methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.