Abstract
With the advent of modular autonomous vehicles (MAVs), this paper presents a novel operational design for flex-route transit services to reduce operation costs of vehicles and improve the service quality of customers. The regime allows the simultaneous dispatch of a certain amount of MAVs from a bus terminal at a departure time. Each MAV is allowed to visit customers freely outside of checkpoints. Self-adaptive capacity and flexible service mode adapt time- and space-dependent demand characteristics. The presented operational design is formulated as a mixed-integer linear program that is NP-hard. A two-stage solution framework is developed to decompose the proposed mathematical programming cautiously. In the first stage, customized dynamic programming with valid cuts is designed to solve a bus scheduling problem efficiently. In the second stage, an effective and fast heuristic is proposed to solve a variant of the dial-a-ride problem and satisfy the technical requirements for developing on-line applications. Numerical examples and a case study show the effectiveness of the proposed design by comparing the flex-route transit services using traditional vehicles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Part E: Logistics and Transportation Review
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.