Abstract

Zach phase plates (PPs) are promising devices to enhance phase contrast in transmission electron microscopy. The Zach PP shifts the phase of the zero-order beam by a strongly localized inhomogeneous electrostatic potential in the back focal plane of the objective lens. We present substantial improvements of the Zach PP, which overcome previous limitations. The implementation of a microstructured heating device significantly reduces contamination and charging of the PP structure and extends its lifetime. An improved production process allows fabricating PPs with reduced dimensions resulting in lower cut-on frequencies as revealed by simulations of the electrostatic potential. Phase contrast with inversion of PbSe nanoparticles is demonstrated in a standard transmission electron microscope with LaB6 cathode by applying different voltages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.