Abstract

Transmission electron microscopy (TEM) images of beam sensitive weak-phase objects such as biological cryo samples usually show a very low signal-to-noise ratio. These samples have almost no amplitude contrast and instead structural information is mainly encoded in the phase contrast. To increase the sample contrast in the image, especially for low spatial frequencies, the use of phase plates for close to focus phase contrast enhancement in TEM has long been discussed. Electrostatic phase plates are favorable in particular, as their tunable potential will allow an optimal phase shift adjustment and higher resolution than film phase plates as they avoid additional scattering events in matter. Here we show the first realization of close to focus phase contrast images of actin filament cryo samples acquired using an electrostatic Zach phase plate. Both positive and negative phase contrast is shown, which is obtained by applying appropriate potentials to the phase plate. The dependence of phase contrast improvement on sample orientation with respect to the phase plate is demonstrated and single-sideband artifacts are discussed. Additionally, possibilities to reduce contamination and charging effects of the phase plate are shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.