Abstract
Estimating the overall costs of transmission needed to integrate variable renewable energy (VRE) onto the grid is challenging. An improved understanding of these transmission costs would support electricity system planning as VRE penetrations increase. This paper brackets VRE transmission capital costs using multiple approaches based on interconnection studies, actual transmission projects, capacity-expansion simulation models, and aggregated U.S. VRE-related transmission expenditures. Each approach possesses advantages and drawbacks, and combining the approaches lends confidence to the results. The resulting range of average levelized VRE transmission costs is $1–$10/MWh, which is generally lower than earlier estimates in the literature. These transmission capital costs can increase the direct plant-level levelized cost of VRE by 3%–33%, based on levelized costs of energy of $29–$56/MWh for utility-scale wind and $36–$46/MWh for utility-scale solar. As VRE deployment continues to expand, policy makers can use this information to (1) assess the benefits of transmission avoidance and deferral when comparing distributed energy resources versus utility-scale projects, (2) evaluate the potential costs of large-scale public transmission investments, and (3) better analyze system-level costs of utility-scale VRE technologies. Future research can expand on the framework presented here by providing a review of operation and maintenance costs for transmission systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.