Abstract
Transitions between different stable configurations of biomolecules are important in understanding disease mechanisms, structure-function relations, and novel molecular-scale engineering. The corresponding pathways can be characterized efficiently using geometry optimization schemes based on double-ended transition state searches. An interpolation is first constructed between the known states and then refined, yielding a band that contains transition state candidates. Here, we analyze an example where various interpolation schemes lead to bands with a single step transition, but the correct pathway actually proceeds via an intervening, low-energy minimum. We compare a number of different interpolation schemes for this problem. We systematically alter the number of discrete images in the interpolations and the spring constants used in the optimization and test two schemes for adjusting the spring constants and image distribution, resulting in a total of 2760 different connection attempts. Our results confirm that optimized bands are not necessarily a good description of the transition pathways in themselves, and further refinement to actually converge transition states and establish their connectivity is required. We see an improvement in the optimized bands if we employ the adjustment of spring constants with doubly-nudged elastic band and a smaller improvement from the image redistribution. The example we consider is representative of numerous cases we have encountered in a wide variety of molecular and condensed matter systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.