Abstract

The rapid increase of information on the web makes it necessary to improve information management techniques. One of the most important techniques is clustering web data. In this paper, we propose a new 3-phase clustering method that finds dense units in a data set using density-based algorithms. The distances in the dense units are stored in order in structures such as a min heap. In the extraction stage, these distances are extracted one by one, and their effects on the clustering process are examined. Finally, in the combination stage, clustering is completed using improved versions of well-known single and average linkage methods. All steps of the methods are performed in O(n log n) time complexity. The proposed methods have the benefit of low complexity, and experimental results show they generate clusters with high quality. Other experiments also show that they provide additional advantages, such as clustering by sampling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.