Abstract

Although electrocoagulation technology has been widely researched in wastewater treatment, high energy consumption and electrode passivation are still the main challenges for its widespread applications. Here, we propose a self-powered electrocoagulation system based on a triboelectric nanogenerator (TENG) with alternating current (AC) outputs to solve these two issues, and thus enhance the removal efficiency of organic pollutants. Compared with the direct current source, the AC power source can reduce the electrode passivation, produce more aluminum hydroxide compounds after consuming an equal amount of charges, and thus improve the degradation efficiency. Moreover, the removal efficiency can be further enhanced by decreasing the frequency AC, in which a 5.7-fold improvement was achieved at 0.2 Hz compared to DC at 1.8 Hz. Inspired by the low frequency of ocean wave water, we developed a self-powered AC-electrocoagulation system to directly drive the electrocoagulation reaction by harvesting water wave energy, which can effectively remove 94.8% of xylenol orange and 98.8% of water-oil emulsion, and thus completely address the problem of energy consumption. This study further promotes the application of self-powered electrochemical systems in treating environmental pollution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call