Abstract

Ultra-wide bandgap (UWBG) semiconductors are promising for many applications, such as power electronics and deep-ultraviolet photonics. In this research, UWBG β-phase magnesium gallium oxide (MgGaO) thin films with a bandgap of 5.1 eV were grown using low-temperature homo-buffer layers in a plasma-assisted molecular beam epitaxy system. The role of the growth temperature and thickness of low-temperature buffer layer on the quality of the active layer was studied using x-ray diffraction and transmission electron microscopy and by analyzing the properties of metal–semiconductor–metal photodetector devices based on these films. It is found that lower buffer growth temperature at 300 °C leads to higher crystal quality of active layer. For the same low buffer growth temperature, different crystal quality in the active layer is attained with different buffer layer thickness. A buffer layer thickness at 40 nm has the best active layer quality with the highest photo current under 265 nm illumination and long decay time as a result of reduced recombination of photo-generated carriers through fewer defects in the active layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call