Abstract

In many simulation-based optimization algorithms, substantial amount of time is often required in the simulation experiments to evaluate the solutions to the problem. In some heuristic or metaheuristic algorithms a significant number of revisits to the same solutions are made when the search converges. We use the ATCRSS heuristic for job sequencing problems as an example to investigate two ways of implementing a dictionary to memorize the simulation results. The objective is to eliminate repeated simulations to improve the computational performance of the algorithm. Our experiments show that the saving in computational time is comparable between hash table and TRIE. For sequencing 10 to 60 jobs the saving is between 20% and 30%. In addition, hash table is more efficient in memory usage than TRIE in our tested cases. We also suggest that hash table is a more general way of implementing the dictionary for other heuristic algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.