Abstract
Clustering algorithms have been applied in several disciplines successfully. One of those applications is the initialization of Radial Basis Functions (RBF) centers composing a Neural Network, designed to solve functional approximation problems. The Clustering for Function Approximation (CFA) algorithm was presented as a new clustering technique that provides better results than other clustering algorithms that were traditionally used to initialize RBF centers. Even though CFA improves performance against other clustering algorithms, it has some flaws that can be improved. Within those flaws, it can be mentioned the way the partition of the input data is done, the complex migration process, the algorithm's speed, the existence of some parameters that have to be set in order to obtain good solutions, and the convergence is not guaranteed. In this paper, it is proposed an improved version of this algorithm that solves the problems that its predecessor has using fuzzy logic successfully. In the experiments section, it will be shown how the new algorithm performs better than its predecessor and how important is to make a correct initialization of the RBF centers to obtain small approximation errors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.