Abstract

The study of tumor evolution is being revolutionalized by single-cell sequencing technologies that survey the somatic variation of cancer cells. In these endeavors, reliable inference of the evolutionary relationship of single cells is a key step. However, single-cell sequences contain many errors and missing bases, which necessitate advancing standard molecular phylogenetics approaches for applications in analyzing these datasets. We have developed a computational approach that integratively applies standard phylogenetic optimality principles and patterns of co-occurrence of sequence variations to produce more expansive and accurate cellular phylogenies from single-cell sequence datasets. We found the new approach to also perform well for CRISPR/Cas9 genome editing datasets, suggesting that it can be useful for various applications. We apply the new approach to some empirical datasets to showcase its use for reconstructing recurrent mutations and mutational reversals as well as for phylodynamics analysis to infer metastatic cell migrations between tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.