Abstract
The computational time required by interior-point methods is often dominated by the solution of linear systems of equations. An efficient specialized interior-point algorithm for primal block-angular problems has been used to solve these systems by combining Cholesky factorizations for the block constraints and a conjugate gradient based on a power series preconditioner for the linking constraints. In some problems this power series preconditioner resulted to be inefficient on the last interior-point iterations, when the systems became ill-conditioned. In this work this approach is combined with a splitting preconditioner based on LU factorization, which works well for the last interior-point iterations. Computational results are provided for three classes of problems: multicommodity flows (oriented and nonoriented), minimum-distance controlled tabular adjustment for statistical data protection, and the minimum congestion problem. The results show that, in most cases, the hybrid preconditioner improves the performance and robustness of the interior-point solver. In particular, for some block-angular problems the solution time is reduced by a factor of 10.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.