Abstract

For Unmanned Aerial Vehicles (UAVs) with limited electrical power to achieve effectively anti-/de-icing at the leading edge of the wing, a strategy of ice shape modulation was proposed. Isolated simulated ice shape pieces printed by 3D printing technology are mounted on a NACA0012 finite wing model, and its lift/drag coefficients and suction-side velocity fields are measured by the six-component force balance and the Particle Imaging Velocimetry (PIV), respectively. The ratio of the spanwise length of a single ice shape piece to chord length and the spanwise length of the non-icing area between the two adjacent single ice shape pieces are defined as dimensionless ice shape length (w/c) and dimensionless modulation ratio (w/λ), respectively. The results indicate that for a fixed w/λ, the wing lift coefficient first increases and then drops with increasing w/c, and a peak value exists when w/c is between 0.1 and 0.2. The lower the w/λ is, the higher the wing lift coefficient will be. The periodical variation of the flow separation area along the spanwise direction is attributed on the one hand to the acceleration effect of the flow field in the non-icing area which reduces the separation area, and on the other hand to the cross-flow caused by the streamwise vortices from the non-icing area to the icing area which promotes the mixing of the flow field (similar to vortex generators). The obtained modulation law is verified through flight tests and provides guidance for the use of ice shape modulation scheme for UAVs that cannot be completely anti-/de-icing under severe weather conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.