Abstract
P-Minder is a lightweight sidewalk segmentation and obstacle detection-based approach designed for phubbers’ safety, which can help phubbers to avoid obstacles and other dangers during phubbing walking. But two issues have been found in previous experiments: P-Minder undifferentiated scores the recognition results and costs high resource occupation during background operation. Therefore, this paper proposes the sector correlation model to classify the recognition and segmentation results for an accurate judgment. Then, the new application architecture design and walking detection model decrease the resource occupation. Besides, the datasets are expanded, and the models are retrained to adapt to the improved architecture. In the same datasets, P-Minder achieves a 1.7 percentage point accuracy improvement during the experiment. The experimental result proves that the segmentation model can reach 81.2% mean intersection over union. Besides, the method finally achieves 75.52% detection accuracy in the experiment with a low computing resources cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.