Abstract

BackgroundVariability in the bony morphology of pathologic hips/knees is a challenge in automating preoperative computed tomography (CT) scan measurements. With the increasing prevalence of CT for advanced preoperative planning, processing this data represents a critical bottleneck in presurgical planning, research, and development. The purpose of this study was to demonstrate a reproducible and scalable methodology for analyzing CT-based anatomy to process hip and knee anatomy for perioperative planning and execution. MethodsOne hundred patients with preoperative CT scans undergoing total knee arthroplasty for osteoarthritis were processed. A two-step deep learning pipeline of classification and segmentation models was developed that identifies landmark images and then generates contour representations. We utilized an open-source computer vision library to compute measurements. Classification models were assessed by accuracy, precision, and recall. Segmentation models were evaluated using dice and mean Intersection over Union (IOU) metrics. Contour measurements were compared against manual measurements to validate posterior condylar axis angle, sulcus angle, trochlear groove-tibial tuberosity distance, acetabular anteversion, and femoral version. ResultsClassifiers identified landmark images with accuracy of 0.91 and 0.88 for hip and knee models, respectively. Segmentation models demonstrated mean IOU scores above 0.95 with the highest dice coefficient of 0.957 [0.954-0.961] (UNet3+) and the highest mean IOU of 0.965 [0.961-0.969] (Attention U-Net). There were no statistically significant differences for the measurements taken automatically vs manually (P > 0.05). Average time for the pipeline to preprocess (48.65 +/− 4.41 sec), classify/retrieve landmark images (8.36 +/− 3.40 sec), segment images (<1 sec), and obtain measurements was 2.58 (+/− 1.92) minutes. ConclusionsA fully automated three-stage deep learning and computer vision-based pipeline of classification and segmentation models accurately localized, segmented, and measured landmark hip and knee images for patients undergoing total knee arthroplasty. Incorporation of clinical parameters, like patient-reported outcome measures and instability risk, will be important considerations alongside anatomic parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.