Abstract

By adding B4C and vanadium to Ni45-Cr3C2 powder in a moderate proportion, it is found that B4C will decompose into elements B and C during laser cladding, and the lattice constants of V and Cr elements are similar, which can form (Cr,V)B2 phase with high hardness. According to the first principles calculation of the hardness of (CR1-XVx)B, it can be seen that it shows a trend of increasing first and then decreasing. With the addition of B4C and vanadium, the mechanical properties of the composite coating increase. When the coating composition is Ni45-30Cr3C2-9B4C-15FeV50, the average microhardness, fracture toughness and wear resistance of the composite coating increase by 22.1%, 121.6% and 54.2%, respectively. Highlights Laser cladding composite coatings with different B4C and vanadium were prepared. V and Cr elements have similar lattice constants and can form a (Cr, V)B2 phase with high hardness. The performance of the laser cladding composite coatings increased with the addition of B4C and vanadium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call