Abstract

Abstract The article presents the research in the field of production of metal–matrix composite coatings using laser cladding technology. The general purpose of producing composite coatings is the improvement of wear resistance of the material surface. In this research, Inconel 625 was used as a matrix material. Nickel-based superalloys are used in several industries for unique applications because they possess a number of beneficial properties including high tensile and fatigue strengths and resistance to high-temperature corrosion in aggressive environments. However, for some applications, this alloy shows insufficient wear resistance of the surface; therefore, for the tests, Inconel 625-based composite coatings were produced with the addition of 10 vol.%, 20 vol.%, and 40 vol.% of titanium carbide (TiC) particles as reinforcement. In general, the addition of TiC particles had a positive effect on the erosion resistance of the surface. The aim of the current research was to test the influence of TiC particle reinforcement of Inconel 625 laser-cladded coatings on corrosion resistance of the surface. For the tests, the laser-cladded composite coatings with uniform phase distribution were produced. The proceeded tests included penetrant tests, macrostructure and microstructure analysis, X-ray diffraction (XRD), and microhardness and corrosion resistance tests. The results showed that using laser cladding, TiC-reinforced Inconel 625 uniform composite coatings may be produced. The addition of TiC particles caused microstructure changes in the Inconel 625 matrix and an increase in hardness. The addition of TiC particles had a negative influence on Inconel 625 corrosion resistance, but with the increased composite coating homogeneity, the corrosion resistance improved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.