Abstract

The effect of annealing of Ti foils before anodization on the morphology and electrochemical performance of resultant nanoporous anatase TiO2 (np-TiO2) as anode in rechargeable lithium-ion batteries (LIBs) was investigated. The np-TiO2 anode fabricated from annealed Ti foils exhibited higher specific surface area and reduced pore diameter compared to np-TiO2 electrode fabricated from as-received Ti foils. The highly porous np-TiO2 anode fabricated from annealed Ti foils exhibited 1st discharge capacity of 453.25 mAh/g and reduced to 172.70 mAh/g at 1 C current rate after 300 cycles; whilst the np-TiO2 electrode fabricated from the as-received Ti foils exhibited 1st discharge capacity of 213.30 mAh/g and reduced to 160.0 mAh/g at 1 C current rate after 300 cycles. Even after 400 cycles, such np-TiO2 electrode exhibited a reversible capacity of 125.0 mAh/g at 2.5 C current rate. Compared to the untreated Ti foils, the enhanced electrochemical performance of np-TiO2 anode fabricated from annealed Ti foils was ascribed to the annealing-induced removal of residual stress among the Ti atoms. The benefit of annealing process can reduce pore size of as-fabricated np-TiO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call