Abstract
Although perovskite has great potential in optoelectronic devices, the simultaneous satisfaction of material stability and high performance is still an issue that needs to be solved. Most perovskite optoelectronic devices use quantum dot spin coating or the gas-phase growth of perovskite thin films as the photoelectric conversion layer. Due to stability limitations, these materials often experience a significant decrease in photoelectric conversion efficiency when encountering liquid reagents. The self-assembled growth of hybrid perovskite crystals determines superior lattice ordering and stability. There are three types of ionic liquids—[Emim]BF4, EMIMNTF2, and HMITFSI—that can effectively enhance the X-ray photoelectric conversion performance of hybrid perovskite crystal CH3NH3PbI3 (MAPbI3), and the enhancement in the photocurrent leads to an improvement in the sensitivity of X-ray detectors. We soak the perovskite crystals in an ionic liquid and perform two treatment methods: electrification and dilution with ETOH solution. It is interesting to find that MAPbI3 perovskite single crystal materials choose the same optimized ionic liquid species in X-ray detection and photovoltaic power generation applications, and the effect is quite the opposite. Compared with untreated MAPbI3 crystals, the average photocurrent density of Electrify-HMITFSI MAPbI3 increased by 826.85% under X-ray excitation and the sensitivity of X-ray detectors made from these treated MAPbI3 crystals significantly increased by 72.6%, but the intensity of the PL spectrum decreased to 90% of the untreated intensity.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have