Abstract

A series of environmental protective policies have been taken recently in the Pearl River Estuary (PRE) to alleviate water pollution; however, their influence on the reduction of heavy metals in estuarine water has not been known. This study selected Guangzhou as a representative city in the PRE and collected estuarine water monthly from 2008 to 2017 to track the variation of As, Hg, Pb, Cd, Cu, Zn, and Se. During the last decade, the high time-resolved record showed that the concentration of Hg, Pb, Cd, Cu, and Zn in estuarine water reduced by 39.5%, 91.0%, 86.2%, 74.6%, and 97.3%, respectively. However, the concentration of As kept in a stable range (1.89-2.69μgL-1) and Se (0.17-0.65μgL-1) increased slightly. The principal component analysis (PCA) and absolute principal component scores-multiple linear regression (APCS-MLR) results suggested that the upstream industrial effluents were major sources for Hg (45.5-92.7%), Pb (47.3-100%), Cd (42.0-90.6%), Cu (85.5-100%), and Zn (100%) and the geogenic source was major origin for As (84.6-98.3%) and Se (0-67.5%). The risk quotient of Hg, Pb, Cd, Cu, and Zn to aquatic organisms largely decreased from 0.03, 0.59, 0.03, 2.06, and 0.26 in 2008 to 0.02, 0.05, 0.006, 0.52, and 0.007 in 2017, respectively. The effective control of heavy metal pollution in the study area can be primarily due to the relocation of hundreds of polluting factories during the last decade.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call