Abstract

In this study, we propose a novel approach to evaluate virtual screening (VS) experiments based on the analysis of docking output data. This approach, which we refer to as docking data feature analysis (DDFA), consists of two steps. First, a set of features derived from the docking output data is computed and assigned to each molecule in the virtually screened library. Second, an artificial neural network (ANN) analyzes the molecule's docking features and estimates its activity. Given the simple architecture of the ANN, DDFA can be easily adapted to deal with information from several docking programs simultaneously. We tested our approach on the Directory of Useful Decoys (DUD), a well-established and highly accepted VS benchmark. Outstanding results were obtained by DDFA not only in comparison with the conventional rankings of the docking programs used in this work but also with respect to other methods found in the literature. Our approach performs with similar good results as the best available methods, which, however, also require substantially more computing time, economic resources, and/or expert intervention. Taken together, DDFA represents an automatic and highly attractive methodology for VS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.